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A generalized theoretical analysis and finite-difference solutions of the Navier-Stokes 
equations of the initial-value problem are applied to obtain the linear internal wave 
fields generated by a density perturbation and two rotational velocity perturbations 
in an inviscid linearly stratified fluid. The velocity perturbations are those due to an 
axisymmetric swirl and a vortex pair. Solutions obtained correspond to the strong 
stratification limit. 

The theoretical results of the rotational perturbation cases show an oscillating 
non-propagating disturbance, which is absent in the density-perturbation case. The 
swirl-flow solution shows an oscillatory behaviour in both the angular momentum 
deposited in the fluid and in the torque exerted by the external gravitational force 
field. The vortex-flow solution shows a vertical ray pattern. 

The equi-partitioning of energy is reached a t  about 0.4 of a Brunt-Vaisala (B.V.) 
period. The potential energy-kinetic energy conversion, or vice versa, takes place 
between 0.15 and 0.3 B.V. periods. 

1. Introduction 
The wake generated by a self-propelled submerged body in a density stratified 

fluid has been a subject of intense study in the past two decades. In general, the 
phenomenon includes two major physical elements ; the internal waves and turbulent 
wakes. For the internal waves, in particular, that generated by the collapse of a 
mixed wake in an incompressible, stratified fluid, the theoretical work of Mei (1969), 
Miles (1971), Hartman & Lewis (1972) and the experimental studies by Schooley & 
Hughes (1972) and Wu (1969) have all contributed to the present understanding of 
the problem. Schooley & Hughes also gave a linear theoretical analysis using the 
normal mode theory in a finite vertical domain, and obtained good agreement with 
Wu’s (1969) experimental data. Wessel (1969) solved numerically the Navier-Stokes 
equation for the unsteady flow resulting from releasing a square region of fluid that 
has been mixed uniformly. His result was also in good agreement with Wu’s data. In  
the analysis by Hartman & Lewis (1972) however, an oversimplified initial condition 
for the density anomaly introduced a mathematical singularity a t  the boundary of 
the mixed region. This singularity is removed in our study and the differences are 
discussed. For the turbulent wake studies, Schooley & Stewart (1963) presented 
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experimental data on a self-propelled body moving through a density stratified fluid, 
Janowitz (1968) derived the linear-flow solution far upstream and downstream of a 
body moving very slowly through a stratified viscous fluid. Peyret (1976) did a 
numerical study of the unsteady laminar flow due to the penetration of a horizontal 
jet of constant density into a stratified fluid. Lin & Pao (1979) gave an extensive 
experimental data base on the turbulent wakes in a stratified fluid. 

None of these studies provided the solutions of internal waves generated by 
rotational velocity perturbations which are an integral part of the wake disturbances, 
and will be our focus here. In  particular, the internal wave fields generated by a swirl 
motion and a vortex pair have not been studied. These two rotational flows are 
chosen for this study not only because of their practical occurrence in ocean but also 
the interesting contrast in physical nature and the resulting internal waves. For 
example, a swirl velocity profile can exist alone, while vortex must appear in pairs; 
a swirl can generate torque, but a vortex pair cannot ; a vortex pair can generate lift, 
a swirl cannot ; a swirl produces an antisymmetric internal wave field while a vortex 
pair produces a symmetric one. 

Any rotational object can generate a swirling flow field, for example by a propeller. 
In an unstratified fluid the swirl Froude number Elswirl = GO, a swirling flow decays 
primarily due to  turbulent diffusion. In a stably stratified fluid, eventually part of 
the swirl energy will be converted into internal waves. As the density stratification 
increases, Elswir, approaches 1 ,  most of the kinetic energy will be converted into 
propagating internal wave energy. It is the solutions in this strongly stratified limit 
that we are interested in here. For the vortex case the effects of density stratification 
on the trailing vortices behind an aircraft have been studied by Saffman (1972), 
numerically simulated by Brown & Kirkman (1974) and by Hill (1975), and 
experimentally by Tombach (1974). All these studies correspond to the strong 
nonlinear, or weak density stratification case, i.e. the vortex Froude number Fvortex 
> 1. In  the ocean, the density stratification is much stronger, and the vortices are 
weaker because no large lift force is necessary to sustain a level flight, so that it is 
likely that Elv,,.,,, < 1 .  Currently there is no theoretical model to analyse these 
physical phenomena in the strongly stratified limit. 

Owing to the simplicity of the physical problem and the convenience of the 
theoretical analysis used by Hartman & Lewis, it is desirable to generalize their 
technique to study the effects of these rotational flows in a linearly stratified fluid. 
This paper presents a generalization of Hartman & Lewis’ analysis. The objective is 
to establish and illustrate the fundamental differences between the internal wave 
fields generated by a density perturbation and those generated by rotational velocity 
perturbations. Solutions are given in closed form for the density deviation p’ from the 
ambient density po, the stream function +, and the vorticity SZ. Asymptotic 
expressions for both the long-time and far-field limits are established. 

Due to the linearity of the governing equations, superposition can be used to study 
a large class of interesting physical problems. For example, the smoothed density 
perturbation solution can be superposed with the swirl-flow solution to obtain the 
density anomaly field in a vigorously mixed region, and solution of pairs of vortices 
can be obtained by superposing vortices spaced apart in any orientation. 

In  92 the general mathematical formulation of the problem is described, and the 
general analytical solution for an arbitrary set of initial conditions is given in closed 
form. In  the remaining sections the general formulation is applied to three particular 
sets of initial conditions. Each section contains a description of the solution and its 
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properties, a numerical evaluation of the analytical solution presented in terms of 
density contour plots, and a comparison of these results with a finite-difference 
solution of the fully nonlinear Navier-Stokes equations in the Boussinesq 
approximation. The finite-difference solution is obtained by using a two-dimension 
unsteady computer code. Such a comparison is valuable in establishing the range of 
flow parameters over which the linear approximation applied in the linear analytic 
method is accurate. Section 3 describes the solution for a smoothed version of the 
density perturbation used by Hartman & Lewis. Namely the singularity a t  the mixed 
region boundary in their initial condition is removed. Comparison of this treatment 
with the original analysis shows a factor of four increase in the internal wave 
amplitude in the far field. Section 4 describes the solution for the swirl-flow problem. 
Section 5 dwells on the solution for a single vortex first ; then the numerical result for 
a vortex pair is presented and analysed. Two vortex models were used ; the Rankine 
model and the Lamb model. The former is more widely used, while the latter is 
theoretically more tractable. Their equivalence in both the near- and far-fields is 
established and their asymptotic results are shown to be identical. Section 6 
summarizes the main results. 

2. General mathematical formulation of the problem 
2.1. Analytical method 

Consider two-dimensional motion in an unbounded, inviscid, incompressible and 
linearly stratified fluid. The linearized Boussinesq equations of motion governing the 
velocities v ,  w, the stream function $, and p’, the deviation of the density from its 
ambient state po in which the fluid is at  rest, are 

where a coordinate system is chosen such that the z-axis points upwards and the 
y-axis points in the horizontal direction to the right. N = (-  (g/p,) (dp,/dz)); is 
the Brunt-VaisalB frequency, henceforth abbreviated to B.V. frequency, and g is the 
gravitational acceleration along the negative z-axis. Note that in addition to $, p’ as 
well as the vorticity D = -V2$ also satisfy equation (2.3). 

The exact solution of equation (2.3) for the initial conditions corresponding to a 
partially mixed, cylindrical wake has been obtained by Hartman & Lewis (1972) 
using Fourier analysis. Their results can be generalized; letting f be either p‘, $ or 
0, the solution of equation (2.3) for the arbitrary initial conditions f(y,z,O) and 
(af/at)l,-O is, 
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w = Nk,(ki + k,2)-1, ( 2 . 5 )  

and the results of the integrals in (2.4) for each sign should be superposed. 
In  the following, (2.4) will be evaluated for three different sets of initial conditions : 

a smoothed version of the density perturbation used by Hartman & Lewis, 
hereinafter referred to as HL, a velocity pert'urbation simulating the swirl flow, and 
the velocity perturbation due to a single vortex. The far-field and long-time 
asymptotic forms of these solutions will also be given. The results of a numerical 
evaluation of (2.4) for each case will be presented in the form of density contour plots. 
Finally, all of these linear calculations will be compared with the results of a finite- 
difference computer code, which solves the fully nonlinear Navier-Stokes equations 
in the Boussinesq approximation, for the same initial conditions. 

2.2. Finite-difference method 
Using rectangular Cartesian coordinates (x, y, z ) ,  we define x as the axial mean flow 
direction, y and z as the horizontal and vertical directions, respectively, and (v,  w )  as 
the corresponding components of the fluid velocity. The equilibrium density po is 
assumed to be a function of the vertical coordinate z only. Neglecting streamwise 
diffusion and applying the Boussinesq approximation, we obtain the following 
equations of motion for an inviscid and incompressible fluid : 

av aw -+- = 0, ay aZ 

(2.10) 

(2.11) 

where t is time and p is the pressure, (2.8)-(2.11) are a system of equations suitable 
for calculation of two-dimensional unsteady flows. Given a consistent set of 
information on an initial (y, 2)-plane, equations (2.8)-(2.10) can be used to 'march' 
in time to obtain the evolving flow field. 

The finite-difference formulation of the above equations is similar to the scheme 
used by Chan (1977), except for a difference in the order of numerical accuracy. Chan 
used an explicit two-level time-integration scheme with a second-order Taylor series 
expansion in the marching direction, while in this paper we have retained a third- 
order accuracy in the marching direction. Centred differencing is used in all space 
derivatives. Marching of any variable q5 is obtained via a Taylor series expansion in 
time, i.e. 
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The superscripts n + l  and n denote the time levels. The first-order derivatives 
(a#,&) are obtained directly from (2.8)-(2.10). For the second- and third- 
order derivatives, the right-hand side of equations (2.8)-(2.10) are differentiated 
with respect to t and a conservative flux-form differencing is applied. 

The corresponding pressure field is obtained by a modified MAC method by 
Harlow & Welch (1965). Let G and zz( denote all the terms in the Taylor series 
expansion for v and w excluding the pressure terms, so that we have 

Substituting these expressions into the incompressibility condition, equation (2.1 l ) ,  
we obtain a Poisson equation for pressure 

Equation (2.12) is solved using the method of successive overrelaxation (SOR). 
The above numerical scheme is stable and accurate to (At) 'so long as the marching 

increment satisfies the Courant-Friedrichs-Lewy condition. The entire system of 
equations is formulated on a staggered variable mesh. The mesh stretching is 
carefully designed to prevent unrealistic wave reflections for a linearly stratified 
fluid. Details of this variable mesh are described in Appendix A of Han, Meng & Innis 
(1983) where results of using an open boundary condition are also described. 

3. Smoothed density perturbation 

HL considered the problem stated in $ 2  for the initial conditions 

3.1. Analytical solution 

EZ ( r  < a ) ,  
p ' = {  0 ( r  > a ) ,  

+' - = 0, 
at 

where r is the radial coordinate, r = (y2+z2)i ,  and E is a density gradient. The 
discontinuity in the initial value of p' at  r = a results in a solution possessing an 
unphysical behaviour there. 

To remove that discontinuity, we replace the initial condition (3.1) with a more 
realistic profile 

(3.3) 

where 13 is the polar angle measured from the horizontal, a is a tilt angle measured 
from the vertical and r,, is a characteristic length related to the radius of the wake. 
This density distribution is a generalization of (3.1), and it is continuous everywhere. 
It corresponds to a smoothed version of (3.1), with the exception of the added tilt 
angle a. 
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For the perturbed density field, the exact solution of (2.3) with the initial 
conditions (3.2) and (3.3) is found to be 

where L' = ( ( k y & N t ) 2 + ( k ~ ) 2 ) * ,  k = (k i+k i )a ,  

and J ,  is the first-order Bessel function of the first kind. 
Expression (3.4) is evaluated by first observing that 

and 

[see 9.1.80 in Abramowitz & Stegun (1972) and H L ;  hereinafter, Abramowitz & 
Stegun (1972) will be referred to as HMF]. 

Substituting (3.5) and (3.6) into (3.4) and evaluating the resulting integrals 
according to 11.4.28 in HMF, we obtain the following result, 

where M represents the confluent hypergeometric function. 
Similarly, the stream function is, 
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(3.9)  

All these solutions are continuous functions for all r and 0. 

(see 13.1.5 in HMF) can be used to obtain the following far-field expressions, 
For r / ro  + 00, the asymptotic expression for the confluent hypergeometric function 

sin (2Z0) 
= C ~ ( L ) - ~ {  -sins C 212- sin 0 J 2 1 ( W  

Po ro 1=1 

sin (2l+ 1 )  0 30 2 .  + - sin (8 + a) Z (21 + 1)  ( 1  + 1 )  1 
Nt 2-0 sin 8 

For N t +  00, the Bessel functions in (3.7)-(3.9) can be reduced using 9.2.1 in HMF 
and the result shows the long-time asymptotic forms of p' for a = 0 decay as (Nt)-i .  

The far-field solutions can also be derived directly from (3 .4)  using the method of 
stationary phase (Erdelyi 1953). Using this method and specifically for internal 
waves in a linearly stratified fluid, Lighthill (1978) derived useful formulae and 
provided physical insight into the results. We used Lighthill's approach, a variant of 
the relationship 9.1.21 in HMF to represent J , ( L * ) / L + ,  and twice applied the method 
of stationary phase to the resulting integral and obtained the following result for 
a = 0 case, 

(3.11) cot 0 (,,,,? '))' e-i(Ntr,cosO/r)2 sin (Nt  sin 0 ) .  
Po 8r2 

Substituting (3.18) below into the above equation in terms of the parameter a in 
HL's notation, we have 

(3 .12)  

Comparing (3 .12)  with (26)  in HL, we find that by changing (3 .1)  into (3 .3) ,  the factor 
W 2 ( N t r o  cos0/r) which represents variable phase due to the discontinuity a t  r = a 
(see Lighthill 1978, p. 435) is replaced by a positive non-oscillatory factor ;(Ntr, cos 
f 3 1 r ) 2  ,-+(Ntr, c 0 s 8 / r ) ~  

Since (3.11) applies only along a ray, i.e. Nt sin0 = kr, it can be reduced to, 

(3.13) 
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(3.14) 

or 8 = 52” with wavelength = 2ro, and the rays will be progressively horizontal as the 
wavelength increases. This result is consistent with Wu’s observation of the rays. 

3.2. Discussion of the analytical result 
It is interesting to compare (3.10) with HL’s asymptotic result [equation (25) in their 
paper], which is reproduced here, using our notation for convenience 

2eza2 O0 sin [(21+ 1) 01 J21+,(Nt) [iZ2(2)’]. (3.15) 
sin 8 Nt  c (21+1) 

Note that J2(2Za/r) has been replaced by its limiting value $2(a / r )2 ,  for 2Za/r --f 0 (see 
9.1.7 in HMF). For the case of interest, a = 0, and equation (3.10) can be 
manipulated into the form 

A relationship between the two parameters a and ro is needed at this point. A 
reasonable criterion which will provide this relationship is to require the total 
potential energy contained in the initial density distribution be the same in both 
cases. Thus, using the following formula for the potential energy in a stratified 
fluid, 

P.E. = lom Jr ,d2rd8dr, 
- 2 dpo/dz (3.17) 

the initial total potential energies for HL’s initial conditions, i.e. from (3.1) and (3.2) 
and for the present initial conditions, i.e. from (3.2) and (3.3),  are calculated. 

Equating the results gives the desired relationship between a and ro,  

(2T = 2. (3.18) 

Substitute (3.18) into (3.16), and take into consideration the fact that the 
approximation made by HL is valid only for r2 /a2  9 1 9 1 ; therefore Z(Z+ 1)  z l 2  in 
(3.16), we can see that the smoothed initial distribution produces a far-field effect 
which is of the same form as that of the discontinuous initial distribution, but it is 
four times larger even though the initial total potential energy is the same in both 
cases. The conclusion can therefore be drawn that, in the discontinuous case, a 
portion of the total energy is ‘trapped ’ a t  r = a where the fluid oscillates persistently, 
as described by HL, and does not radiate to the far field ; while in our smoothed case 
no energy is trapped. The amount of energy trapped in the HL’s discontinuous case 
accounts for the smaller far-field amplitude. 

3.3. Discussion of the density contours 
In order to gain some physical insight into the internal wave field generated by the 
collapse of a well-mixed region, (3.7) has been evaluated up to N t  = 10 cycles for 
the fully mixed case with no wake tilt, that is, the e = -dpo/dz and a = 0 case. The 
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FIGURE 1.  Linear internal waves generated by a smoothed density perturbation in an inviscid and 
linearly stratified fluid. g / N 2 D  = 110.48, r o / D  = 0.346, ( N t / 2 ~ ) :  (a) 0 cycle, (b) 0.59 cycle, (c) 1.18 
cycle. 

infinite series is evaluated term by term until the individual term contributes less 
than lop6 of the computed partial sum. The series converges rapidly, requiring the 
evaluation of the first six to eleven terms. I t  converges more slowly as Nt or r / D  
increase. Contours of the density p = po(z) + p' are given in the figure 1 series a t  three 
different times, Nt = 0, 0.59 and 1.18 cycles. The density is normalized to be unity 
at  x = 0. The ticks and dots indicate the location of the mesh points where the infinite 
series is evaluated. This variable mesh is identical to the one used in the finite- 
difference solution to be discussed in $3.4. 

The input conditions are ro /D = 0.346 and N = 0.094 rad/s. These are chosen to 
allow later intercomparison with the velocity disturbance cases. The length D is an 
arbitrary but common lengthscale also chosen for later comparisons of all density 
contour plots. A non-dimensional parameter, fi = g / N 2 D  = 110.91 similar to a 
Froude number is obtained, which says the water density is much greater than the 
density disturbance, a necessary linear condition. The coefficient in (3.7) can be 
expressed as 3 - _ - -  '0 1 = 3.12 

Po 0s" 
1 0 - 3 ,  

for the case to be reported here. 
Note that in figure 1 (a ) ,  the density field is symmetric with respect to the z-axis 

and antisymmetric with respect to the y-axis. This property holds true at all times 
and is self-evident from (3.7) where a = 0. The maximum initial vertical displacement 
can be computed from (3.3) as 

at x /D = f (1/2/2) (r,,/D) g k0.24, which is close to the apparent displacement of 
the third and fifth contours, counting from the top. 

Figure 1 ( b )  shows a symmetric internal wave pattern a t  approximately half of a 
B.V. period after the initial disturbance is released. The phase of the internal wave, 
as expected, is completely reversed ; the centre portion is going through a ' collapse ' 
motion. Connecting the wave crests or troughs one can see that an angle of 43" is 
evident in figure 1 (b )  and 50" in figure 1 (c). This ray angle was observed by Wu (1969) 
in his experimental study of a turbulent mixed region, where he found that angle 
is = 3x/10 or 54' from the horizontal direction, and is also consistent with (3.14). 
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FIGURE 2. The isopycnic displacements vs. B.V. period a t  two positions on the computational plane 
for the smoothed density perturbation case. -, numerical solution of the fully nonlinear 
Navier-Stokes equation ; 0, linear theory. 
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3.4. Comparison with finite-difference solution 
The results presented in $3.3 can be compared with the outputs of the finite- 
difference method which solves the fully nonlinear Navier-Stokes equations. 

One difficulty in making the comparison is that the solution presented in $3.1 is for 
an unbounded fluid, but a bounded computational domain is required when solving 
the equations by a computer code, which uses ‘free-slip wall’ boundary conditions. 
After some experimentation, it was found that a computational domain of dimensions 
4 0 0  in the horizontal direction and 4 0 0  in the vertical direction was sufficiently large 
to make any disturbance in the flow due to the solid boundaries negligible in the 
region of interest. The alternative is to  use an ‘open wall’ boundary condition, results 
of which are given by Han, Meng & Innis (1983). I n  calculations presented here the 
computational effort is reduced by observing that the symmetry of the flow requires 
that only one quadrant of the flow field be computed. 

The results of the finite-difference method and that from (3.7) are shown in figures 
2 ( a )  and ( 6 )  in terms of the time history of the isopycnic displacement a t  three near- 
field locations on the computational plane. The agreement is remarkably good. Note 
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FIGURE 3. Energies per unit length on the computational plane vs. B.V. period for the smoothed 
density perturbation case. (a)  Potential energy. ( h )  Kinetic energy. 

that, after the initial collapse, the envelopes of the curves have the predicted (Nt)-g 
asymptotic behaviour. This clearly shows that the fully mixed wake-collapse 
problem falls well within the realm of the linear approximation. 

The small discrepancies that do exist between the two methods are believed to be 
due to the variable mesh applied in the computer code, i.e. the finite-difference mesh 
becomes coarser as the distance from the wake centre increases. Figure 3 (a ,  b )  shows 
the history of the potential and kinetic energies in the computational plane. After the 
initial collapse, the potential energy is seen to remain, on average, constant, but the 
kinetic energy shows an average decline; the total energy, therefore, does not remain 
constant. The total energy loss is approximately 5%. One origin of the kinetic energy 
loss is that  the flow divergence V - u  is not exactly zero, so that it only affects the 
velocity equations, hence the kinetic energy, not the density equation which does not 
depend upon the pressure gradient. Another origin is the strong stretching of the 
variable mesh which eliminates the short-wavelength waves as they propagate into 
the coarse mesh region. However, a rigorous demonstration of this has not been 
attempted, although some relevant results using an ‘open ’ boundary condition are 
discussed in Han et al. (1983). 
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Two noteworthy points can be made about figure 3. First, initially the total energy 
of the flow is all contained in potential energy form, the value of which can easily be 
calculated from (3.17). Since only a quadrant of the flow is calculated, figure 3 shows 
only a quarter of the energies. Second, at about half of a B.V. period. the flow reaches 
an equilibrium state ; namely the energy is equi-partitioned into potential and kinetic 
energies, and the kinetic energy drifts below half of the total energy released 
initially. 

4. Swirl-flow perturbation 
4.1. Analytical formulation 

An analytical representation of a propeller-generated swirl velocity profile is 
obtained. The details will not be given here, however; the essence is briefly described 
below. We solve the one-dimensional axisymmetric equations of motion in a non- 
stratified fluid. By introducing a self-similar variable T,I = r/(2vt)i,  where r is the 
radial coordinate and v is the kinematic viscosity, we find for the laminar flow case, 
the circumferential swirl velocity profile : 

c 1 2  v0 = +T,I e-n , 
t s  

where C, is a constant. Similarly, for turbulent case with 7 being the turbulent eddy 
viscosity and C2 another constant, we obtain 

with ro = (2vt)i. Equation (4.1) is applied here as the initial condition. I n  addition, we 
consider the density field to be initially undisturbed, 

p’ = 0. (4.2) 

The remaining initial condition is obtained by substituting the velocity perturbation 
(4.1) into (2 .2) ,  

(4.3) 

From (2.4) and the initial conditions (4.2) and (4.3), we obtain the exact result, 

(4.4) 

where L* is defined in 93. Physically, Jo(L*) represent left and right propagating 
waves. 

Expression (4.4) can be evaluated in a manner similar to that which was used in 
$ 3  by substituting the following relation (see 9.1.79 in HMF), 

00 

Jo(L+)-Jo(L-)  = -4 C JZ1+,(Nt)  J2L+l(kr)  cos [(21+ 1)8], (4.5) 
z=o 
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into (4.4) and evaluating the resulting integrals (see 11.4.28 in HMF) to obtain, 

211-1 

2 / 2 -  C O S [ ( 2 1 + 1 ) 8 ]  
p'(r,  B ,  t )  2+vON g r ( z + 2 )  

Po - g 1=0 r ( 2 z + 2 ) (  c,) 
l+2 ,21+2,  - 2  - . (4 .6)  (3'1 

The stream function and vorticity are determined in a similar fashion ; they are, 

x J , , ( N t ) M  1+1,21+1, -2(LJ], (4 .7)  I YO 

and 

The first terms in (4 .7)  and (4 .8)  represent time-dependent local non-propagating 
disturbance, while the second terms represent the propagating internal waves. 
Notice that in (3 .8)  and (3 .9)  no such local disturbances exist, owing to the absence 
of the initial velocity perturbation. 

Again using the asymptotic expression for the confluent hypergeometric function 
(13.1.5 in HMF), we can obtain the far-field expressions for (4.6)-(4.8). It can be 
shown that the internal wave amplitude, the stream function and vorticity produced 
by a swirl all decay with r in the far field a t  the same rates as those produced by the 
smoothed density perturbation. The asymptotic expression as Nt -+ 00 for the swirl 
induced p' decays as (Nt)-i, a rate three times slower than the smoothed density case. 
The stationary phase result can be shown to be, 

(4.9) 

which shows a slower decay than (3 .11) .  Along a ray Nt sin B = kr, so that (4 .9)  is 
reduced to, 

(4.10) voNNro (ky, cot # ) 2  e-Q(krocoto)2 cos (kr ) ,  

which has a maximum a t  tan6  = kr0/22/2,  or 6 = 48" at  kr, = x .  A result very 
similar to the density-perturbation case. 

4 .2 .  Discussion of the analytical result 

One interesting physical quantity introduced by the swirl motion into a stratified 
fluid is the angular momentum. Since the gravity does exert a torque on an 
asymmetric (with respect to the vertical axis) density anomaly field, it is desirable 
to understand how both the torque and angular momentum vary with time. 
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FIGURE 4. Linear internal waves generated by a swirling velocity perturbation in an inviscid and 
linearly stratified fluid. +, centre of the swirl. g/N2D = 110.48, 2xVO/ND = 8.342, r o / D  = 0.346, 
Nt/27t: (a) 0.12 cycle, ( b )  0.48 cycle, ( c )  0.71 cycle, ( d )  1.31 cycle, ( e )  2.26 cycle. 

The torque per unit length about the origin is obtained by integrating the torque 
per unit volume over the entire plane, 

T(t) = lom [r (rxpg)rdBdr  = -i [om [r p’r2g cos 8 d8 dr, (4.11) 

in which p’ is the density anomaly and i is a unit vector perpendiculr to the (y, 2)- 
plane. 

Substituting of (4.6) into (4.1 1) and noting that the integral over d is zero for every 
1 except 1 = 0, for which the value of the integral is 7c. Therefore, only the first term 
in the series is non-zero, and (4.11) reduces to 

which can be further simplified via 13.6.12 in HMF to 

T( t ) = - iv, Np,  ?-; an J1 (Nt)  . (4.13) 

Since the torque is equal to the time rate of change of the angular momentum, the 
latter can be determined by integrating (4.13) with respect to time; the resulting 
constant of integration is determined by the initial value of the angular momentum. 
It can be shown that the angular momentum is 

L(t) = ivopor;~7cJ,(Nt). (4.14) 
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Both T and L show an interesting oscillation a t  a frequency slower than, but 
asymptotically approaching, the B.V. frequency. They are nearly 90" out of phase 
from each other. The amplitude decays as (Nt)-a. This can be called a 'torsional 
pendulum ' in analogy to its counterpart in solid mechanics. 

4.3. Discussion of the density contours 
Equation (4.6) has been numerically evaluated up to Nt  = 10 cycles; the results are 
shown in figure 4. 

The B.V. frequency N = 0.094 rad/s, a half radius of the initial swirl profile 
r o / D  = 0.346, and a swirl velocity Vo = 1.25 m/s are chosen for simulating a 
laboratory experiment, which yields the following non-dimensional parameters 

2.nvo = 8.342. gD 
v,2 N D  

Q = - = 62.921, Fswirl = - 

The coefficient in (4.6) can then be expressed as 

2.n 
VO N = 1.693 x 42G 4 2 -  = 

9 

At t = 0, the initial density contour configuration, which is not shown here, 
corresponds to  an ambient state at rest ; all contours are flat and horizontal. At 0.12 
B.V. periods (figure 4(a)) the density contour simply follows the swirl flow which is 
rotating in the clockwise direction. The swirl brings heavier fluid from below to the 
left of the wake centre and lighter fluid from above to the right of the wake centre. 
The density deviation field is symmetric with respect to the y-axis, and 
antisymmetric with respect to the z-axis, as is evident from (4.6) when 8 is replaced 
by -8 or K-8. The maximum internal wave amplitude is approximately 

= - p 'p  1 - 1 z - 27c - Vo Nt  - N Y 1 ro - 0 . 3  a t - z - - = & 0 . 2 ,  
dpo/dz D 2etND 2.n D 2 0  

which seems in agreement with the numerical results. Very little internal wave 
energy is radiated from the centre region ; the top and bottom contours essentially 
remain stationary. Half a B.V. period later, at N t  = 0.48 periods, figure 4(b) shows 
that the stratification effect is beginning to emerge on the top and bottom contours, 
while in the centre region, that is, where ( z /D(  < 0.2, the phase of the internal wave 
is still dominated by the swirl motion. Notice that the slope of the centre contour, 
that is, the contour for p/po(0 )  = 1, is a t  an angle of -65" from the horizontal. At 
about half a B.V. period from Nt  = 0.12 periods, that is, a t  Nt = 0.71 periods as 
shown in figure 4(c), the phase of the internal wave is completely reversed. Notice, 
however, that unlike the wake-collapse problem described in the last section, the 
internal wave amplitude is not significantly reduced. At about a B.V. period from 
0.12 B.V. periods, a t  Nt  = 1.31 periods (figure 4d), the phase is again reversed. The 
slope of the contour centre is again at  about -64". At this time, however, the wave 
energy has propagated over a much larger area than the initial dimension of the swirl 
region. Therefore, some attenuation of the internal wave amplitude is expected to 
emerge. If one measures the peak to trough vertical distance for the centre density 
contours and tabulates them as a function of Nt, 

Nt = 0.12, 0.48, 0.71, 1.31, 2.26, 

= 0.34, 0.31, 0.42, 0.36, 0.21, 
'/maximum 
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one sees that the internal wave amplitude grows initially in the first half B.V. period, 
so that one can expect that it takes about half a B.V. period for the fluid to react to 
a velocity-perturbation field. After that ,  the internal wave amplitude decreases 
slowly according to (Nt)-i  as compared to the density-perturbation case which decays 
as (Nt)- i .  It may be reasonable to generalize this observation by suggesting that in 
the linear limit a velocity-perturbation field generates an internal wave field more 
persistent than that generated by the density-perturbation field. 

In figure 4 ( e )  the density contour plot a t  Nt = 2.26 periods is given. The entire flow 
domain is oscillating in phase. If one connects the wave crests or troughs one can see 
the almost vertical rays propagating energy directly upwards or downwards which 
is in strong contrast to the density-perturbation case. 

4.4. Comparison with Jinite-diflerence solution 
This comparison is helpful in establishing the range of swirl velocity perturbations 
over which the linear approximation is valid. It is clear from the density contour 
plots of $4.3 that the flow for the values of the parameters given in that section is not 
a linear one, so V, must be reduced in order to make a fair comparison. A factor of 
five reduction in V, was found to be a suitable choice. The linear solution is simply 
proportional to V,, so the solution for the new value of V, is easily obtained from the 
results of $4.3 ; the amplitudes of the density contours are reduced by a factor of five. 
The relevant non-dimensional parameter, which is a measure of the relative 
importance of the nonlinearity versus the stratification effect, is then EIswirl = 1.67. 

The readers are reminded that the solution formulated in $4.1 is for an unbounded 
fluid. Furthermore, this flow, unlike the smoothed density case, has no symmetry 
properties that can be exploited to reduce the cost of the computation ; so that the 
entire flow field was computed. A computational domain of dimensions 13.100 in the 
horizontal direction and 8 0  in the vertical direction was found to be satisfactory. 

Plots comparing the analytical results of $4.1 and the finite-difference solutions in 
terms of the history of the isopycnic displacements a t  two near-field locations on the 
computational plane are presented in figure 5 ( a ,  b ) .  The wake centre is located a t  the 
origin of the coordinate system on the computational plane. The agreement is seen 
to be very good. Note that after the subsidence of the initial swirl impulse, the 
envelope of these curves have the predicted (Nt)-i asymptotic behaviour. 

Figure 6 shows the history of the potential energy per unit length on the 
computational plane as computed by the finite-difference computer code. After the 
initial swirl impulse, the potential energy is constant, on average, but shows the wall- 
reflected wave energy near Nt = 7 periods. Two points about the energy history 
should be made here. First, as expected, all the energy is initially in kinetic energy 
form, a t  two-tenths of a B.V. period, half of the kinetic energy (not shown) is 
converted into potential energy - an interesting reversal to the smoothed-density- 
perturbation case. Second, the equi-partition of energy is reached shortly after 0.4 
B.V. periods, similar to the density case. To be more specific, the equi-partition 
mentioned here is defined as when the half energy mark is crossed the second 
time. 
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FIGURE 5.  The isopycnic displacements vs. B.V. period a t  two positions on the computational plane 
for the swirl case. -, numerical solution of the fully nonlinear Pu’avier-Stokes equations; 0, 
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FIGURE 6. The potential energy per unit length on the computational plane vs. B.V. period for 
the swirl case. 
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5. Vortex-flow perturbation 
5.1. Analytical solution 

The tangential velocity field vo associated with a single vortex with core radius ro,  and 
located a t  the origin, can be represented by the following relation, which can be 
called a modified Rankine-vortex model, 

r , r  vo(r )  = -- 
27~ r 2 + r i ’  

where ro is the circulation of the vortex. From (5.1) and ( 2 . 2 ) ,  the initial conditions 
for the density perturbation corresponding to a single vortex can be determined 
as 

(5 .2)  p’ = 0, 

aP’ - r, dP0 Y 
at 2x dz r 2 + r i  

Equation (2.4), in this case, can be reduced to the following form 

(5.3) 

in which L* is defined as in $3, and K ,  is the first-order modified Bessel function of 
the second kind. 

Substituting (4.5) into (5.4) and integrating the resulting modified Weber- 
Schafheitlen integrals (see $13.45 in Watson 1958), we obtain 

x J,2+l(Nt) F I +  1, I+ 2,21+ 2 ; - (91, (5.5) i YO 

where F represents the hypergeometric function. 
In this case, the stream function does not satisfy the boundary condition $ + 0 as 

r/ro+ co, so due care must be taken in applying the Fourier transform method. 
However, the result is, 

Z+l,Z;2Z+l; - 

The vorticity field is found to be 

1+2, I+ 1 ;21+ 1 ;  - 

As is true in the swirl case, the first terms in (5.6) and (5.7) represent the non- 
propagating local disturbance a t  the source. 

An asymptotic expression, as ( r / r o )  -f co, for (5.5) can be obtained by first writing 
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the analytic continuation of the hypergeometric function in the form of an infinite 
series, as is given on p. 63 of Erdelyi (1953). Then, retaining only the lowest-order 
term in ( r o / r )  the following asymptotic expression for (5.5) can be obtained, 

In a similar manner, the following far-field expression for the vorticity is obtained, 
while the stream function is, of course, unbounded a t  infinity. 

(5.9) 

It is important to note that the density anomaly and the vorticity decay much 
more slowly, as r / r o +  00,  in the vortex case as opposed to either the smoothed- 
density-perturbation case or the swirl case. 

For Nt+oo, the asymptotic forms of (5.5)-(5.7) can be obtained by the use of 
equations (9.2.1) in HMF. We find that p' generated by a vortex decays as (Nt)-i, 
similar to the swirl case and is a factor of three slower than the density case. 

5.2.  A vortex pair in a strati)ied Jluid 

It is a well-known fact that the total kinetic energy associated with a single vortex 
is infinite, so it does not correspond to any physical process. However, it can be 
shown (Milne-Thomson 1968), that the velocity field associated with a pair of 
vortices of equal, but opposite, strength has finite total kinetic energy. Therefore, an 
extension of the present analysis to the case of a vortex pair is necessary. 

In  the framework of the linear analysis, the solution of a vortex pair can be 
obtained by superposing solutions of the single-vortex case. The solution obtained in 
the previous section was for a single vortex located at  the origin, however, so that the 
solution for a single vortex at  an arbitrary position on the plane needs to be obtained 
by a simple translation of the coordinate system. The solution for a pair is then just 
the sum of two solutions of this type. Although the solution is simple to obtain, its 
form is complicated, and this makes it difficult to express in analytic form. 

5.3. Discussion of the numerical result 
Equation ( 5 . 5 )  is evaluated term by term, and the results are shown in figure 7 .  The 
hypergeometric function converges a t  a rate about three times slower than the 
confluent hypergeometric function, so that the present calculation is more time- 
consuming than the previous two cases. The solution for a vortex pair, with vortices 
of circulation strength +& located a t  y/D = 1 0 . 3 ,  z / D  = 0, is obtained by 
superposing two evaluations of (5 .5 ) .  The initial position of each vortex is marked by 
a ' + '. The calculation was carried out up to Nt = 5 cycles. The input conditions are : 
ro  = O.lD, the vortex core radius, b = 0 . 6 0 ,  the separation distance of the vortices, 
N = 0.094 rad/s same as the previous cases. They are chosen to simulate a laboratory 
experiment, and we have the following non-dimensional parameters : 

r, - 0.442, ij = 9 6  - = 0.444. 
r: 9 vortex - - - r, Fvorticity = - = 50 F - 

xNb2 Nr: 
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FIGURE 7 .  Linear internal waves generated by a vortex pair in an inviscid and linearly stratified 
fluid. +,  centres of the vortices. g/N2D = 110.48, T/nNb2 = 0.45, r , /D = 0.1, b / D  = 0.6, N t / S n :  (a )  
0.2 cycle, ( b )  0.4 cycle, (c) 0.79 cycle, (d )  1.19 cycle, (e) 1.78 cycle. 

The coefficient in (5 .5 )  can then be expressed as 

At t = 0, the density contour is the ambient stratification profile with all contours 
flat and horizontal (not shown). The ticks and dots on the contour lines indicate the 
same variable mesh points to be used in the finite difference calculation in $ 5 . 5 .  At 
Nt = 0.2 cycles shown in figure 7 ( a ) ,  the maximum vertical displacement is 
approximately 0.4. It can also be estimated from the leading term of (5 .5)  to be 

x 0.6. - -  - 
nNb2 ro D 1 + ( b / 2 ~ , ) ~  

on the centre line. At this time the fluid is completely dominated by the symmetric 
vortex-pair motion, the vortex pair acting as if it  were in a homogeneous fluid. Very 
little internal wave energy is radiated away from the region of initial disturbance. At 
0.2 B.V. periods later (figure 7 b ) ,  the stratification effect begins to emerge on the top 
and bottom contours where the phase has reversed, but the centre portion is still 
dominated by the vortex-pair motion. A portion of the fluid, that is, the closed 
contour in the centre region with p = 0.99545, which was originally located a t  the 
z / D  x 0.5 level, seems to be trapped by the vortex motion and is kept separated from 
its original level. Similarly, two smaller blobs of fluid with p = 1.00227 are separated 
from their original level a t  x/D x -0.2. At about 0.4 B.V. periods later a t  Nt = 0.8 
as shown in figure 7 ( c ) ,  the phase of the internal wave is completely reversed. The 
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configuration of the density contour is nearly an upside-down version of figure 7 (a ) .  
Another 0.4 and one B.V. periods later, a t  Nt = 1.19 cycles and Nt  = 1.78 cycles as 
shown in figure 7 ( d , e ) ,  the phase is again reversed and the entire fluid column 
engages in an oscillation completely in phase. If one connects the crests and troughs, 
one finds the almost vertical rays along which internal waves propagate energy 
directly upwards or downwards. This confirms the earlier observation that a vortex 
perturbation in a stratified fluid introduces a near field depending upon its initial 
vorticity and decays slowly in proportion to Jo(Nt) .  

One can tabulate the maximum vertical displacement on the centre line ( y / D  = 0) 
as a function of Nt ,  

Nt  = 0.2, 0.4, 0.79, 1.19, 1.78, 

= 0.51, 0.43, 0.34, 0.25, 0.20, 

which follows the predicted asymptotic decay law (Nt)-i for (5.5) quite closely. 

5.4. Lamb’s vortex model 
The analysis of $5.1 is greatly simplified if the velocity field due to a vortex is 
modelled by the following relation instead of (5.1). 

To elucidate the similarity of (5.10) to (5.1), we observe that (5.10) has the following 

(5.11) Vo(r) - L(-) for -+O,  and -2 2nr for -+ ro 00, 

which matches the behaviour of (5.1) in the same limits. One should also notice that 
a t  r / r o  = 1 ,  from (5.10), we have 

limiting forms, r r  r r r  
2nr0 ro ro 

(5.12) 
r 

V,( 1) = (0.63) ~ 

2nr0 ’ 

which is comparable to that obtained from (5.1) 
- 

1 0  

2nr0 
Vo( 1) = (0.5)-. (5.13) 

Therefore, (5.12) describes an initial condition very similar to that described by (5.1), 
but the form of (5.10) is more tractable to analysis, and will be the velocity 
perturbation to be analysed from here on. 

The initial conditions for the density perturbation in this case are, 

p’ = 0, (5.14) 

and (2.4) yields the results, 

(5.15) 

(5.16) 

where L’ is defined in $3. 
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The expression (5.16) can be evaluated by using (4.5) and relation 11.4.28 in HMF 
to obtain the following exact solution. 

Similarly, for the vorticity, we find 
(5.17) 

cos ( S I O )  J 2 , ( N t )  M I + 1,2z+ 1, - - [ (3‘11 r(Z+l) 2L  

rpz+ I)(;) { e - w J o ( N t )  + 2 c 
1=1 

(5.18) 

The asymptotic expression for (5.17), as r / ro  + 00 can be obtained by invoking the 
asymptotic formula for the confluent hypergeometric function, 13.1.5 in HMF. The 
result is found to be identical to the asymptotic form of the modified Rankine vortex 
model, namely, (5.8). This is expected since the far-field amplitude generated by a 
vortex does not depend upon the detailed local flow a t  the source, it only depends 
upon the overall characteristics of the vortex. Similarly, the asymptotic result for the 
vorticity is found to be identical to (5.9). 

The stationary phase result can be shown to be 

(5.19) 

which decays slower than both the smoothed density and swirl cases. Along the ray 
Nt sin8 = kr, so that the above equation can be reduced to 

(5.20) 

which obviously has a maximum a t  8 = in, i.e. the most energetic rays are vertical. 
This difference will be clearly illustrated in the contour plots. 

5.5.  Comparison with finite-difference solution 
The results of the previous sections are compared with the outputs of a finite- 
difference computer code that solves the fully nonlinear Navier-Stokes equations in 
the Boussinesq approximation. This comparison is useful in establishing the range of 
vortex velocity perturbations over which the linear approximation is accurate. 

The vortex model of 95.4 was selected for this comparison. The density-contour 
plots obtained from a numerical evaluation of (5.17), using the technique described 
in $5.3, are very similar to figure 7 ,  given the same flow conditions. It is clear from 
these figures that the flow for these values of the flow parameters is not in the linear 
regime. The input conditions, which were found to give a linear flow, yield the 
following non-dimensional parameters : 

- 0.0442, @ = F . .  =----5.0,  r , -  F - r, 
vortex - __ - Nri nNb2 vorticity 

which is essentially a factor of ten reduction in & from the results shown in figure 7. 
A computational domain of dimensions 200 in the horizontal direction and 200  in 
the vertical direction was found to be sufficiently large to minimize the effects of the 
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FIGURE 8. The isopycnic displacements vs. B.V. period a t  two positions of the computational plane 
for the vortex pair case. -, numerical solution of the fully nonlinear Navier-Stokes equations; 
0, linear theory. 

solid walls in the region of interest. The symmetry of the flow was used so that only 
half of the flow field was actually computed. 

Plots compqring the results of the two calculatioqs in terms of the history of the 
isopycnic displacements a t  three near-field locations on the computational plane are 
presented in figure 8 (a,  b ) .  The centre between the vortices is located at the origin of 
the coordinate system on the computational plane. Like the previous two cases, fluid 
at  all three locations oscillates a t  a frequency close to  the B.V. frequency. The 
agreement between the analytic results and finite-difference results is remarkably 
good. Note that after the initial impulse, the envelopes of these curves assume the 
predicted (Nt)- i  asymptotic behaviour. 

Figure 9 shows the history of the potential energy per unit length on the 
computational plane as computed by the finite-difference code. It is remarkable that 
half of the initial kinetic energy is converted into potential energy a t  0.15 B.V. 
periods : a more efficient conversion of the energies than both the smoothed density 
perturbation and swirl-flow cases. Again, like the other two cases, the vortex flow 
reaches an equi-partitioning of energy a t  0.4 B.V. periods. After the initial impulse, 
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FIGURE 9. The potential energy per unit lenth on the computational plane vs. B.V. period for 
the vortex pair case. 

- 

the potential energy is constant, on average, and the influence of wave reflection is 
seen beginning a t  Nt = 7.16 cycle. 

6. Conclusion 
A generalized theoretical analysis of the initial-value problem is applied to obtain 

the linear internal wave fields generated by a density perturbation and two 
rotational velocity perturbations in an inviscid linearly stratified fluid. The velocity 
perturbations are those due to an axisymmetric swirl and a vortex pair. Our results 
correspond to the weak rotational flows or equivalently for a strongly stratified fluid. 
The solution for a smoothed version of the discontinuous density perturbation used 
by HL is also obtained. For the vortex case, two representations were applied: one 
is the modified Rankine model and the other is the Lamb model. Solutions are given 
in closed form for the density deviation from the ambient density, the stream 
function and the vorticity. Asymptotic expressions for both the long-time and far- 
field limits are established. The stationary phase results and the most energetic ray 
angles are derived and intercompared. The key differences and similarities of the 
internal wave amplitude are best illustrated in tabulated form and are shown in 
table 1. 

Comparison of the result of the smoothed density-perturbation case with the 
results obtained by HL, for the same initial potential energy, shows that our result 
is a factor of four higher in the internal-wave amplitude in the far field. This is 
because in the discontinuous case, a portion of the total energy is ‘trapped ’ a t  r = 
a where the fluid oscillates persistently, as described by HL, and does not radiate to 
the far field ; while in our smoothed case no energy is trapped. The amount of energy 
trapped in HL’s discontinuous case accounts for the smaller far-field amplitude. 

The theoretical results of the stream function and vorticity show that the 
rotational perturbation cases possess an oscillating non-propagating disturbance, 
decaying slowly in proportion to J,(Nt), which is absent in the density-perturbation 
case. Therefore the near fields of the velocity-perturbation cases are dominated by 
their initial vorticity which are clearly shown in the density contour plots. The swirl- 
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Most energetic Decay Far Long Time needed 
Characteristics : ray angle rate field time for conversion 

conditions horizontal law law initial energy 
8 from along decay decay of half of initial 

P.E. + K.E. 
(Nt)-i 0.33 B.V. period 

Smoothed density tan8  = - r-' r-3 kro 
4 6  

K.E. + P.E. 

0.25 B.V. period 
Swirl t an8  = - r-l r-3 (Nt)-f kro 

2 4 2  

Vortex K.E. + P.E. 
(Nt ) - t  0.15 B.V. period 

r-l r-l 

TABLE 1 

flow solution shows an oscillatory behaviour in both the angular momentum 
deposited in the fluid and in the torque exerted by the external gravitational force 
field. Both of them oscillate a t  a frequency slower than but asymptotically 
approaching the B.V. frequency. They are nearly 90" out of phase from each other. 
This can be called a 'torsional pendulum' in analogy to its counterpart in solid 
mechanics. Comparing the asymptotic expressions of the two vortex models, i.e. 
Rankine's and Lamb's, we find that they are identical, confirming the intuition that 
the far-field solutions do not depend upon the detailed local flow a t  the source, i.e. 
(5.1) versus (5.10); it only depends upon the overall characteristics of the vortices. 

The analytical solutions in terms of the infinite series are evaluated numerically for 
all three cases and are presented in the form of density contour plots as a function 
of time. These near-field contour plots reveal that the fundamental difference between 
the internal wave field generated by a density perturbation and one generated by 
velocity perturbation is that the velocity perturbations possess a non-propagating 
vorticity field mentioned above. 

Finite-difference solutions of the Navier-Stokes equations are also obtained for all 
three perturbations. The results are presented in terms of isopycnic displacements 
versus B.V. period at several near-field locations. They all show oscillations at  
frequencies close to the B.V. frequency. They are compared with the linear 
theoretical solutions, and excellent agreement between them is found for all cases. By 
this comparison, we also found the linear limits for the swirl and vortex cases, 
expressed in terms of the Froude numbers, to be Fswirl x 1.7 and Fvortex x 0.04. 
Histories of the energies are also obtained from the finite-difference solutions. In the 
linear limit, the equi-partitioning of energy is reached a t  about 0.4 of a B.V. period. 
The potential energy-kinetic energy conversion, or vice versa, takes place between 
0.15 to 0.3 B.V. periods, with the vortex-pair flow, among the three cases studied, 
being the most efficient one. 
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